20 research outputs found

    Temperature and dissolved oxygen stratification in the lake Rudrasagar: Preliminary investigations

    Get PDF
    Temperature drives the major physico-chemical and biological actions in inland water bodies. The higher the water temperature, the greater the biogeochemical activity influenced by the environmental intrinsic and extrinsic parameters. Temperature also controls the dynamics of sustainability of various aquatic organisms that live in lakes and reservoirs, though higher life forms, such as fish, insects, zooplankton, phytoplankton, and other aquatic species all have a recommended temperature variety. The increase in water temperature due to the increase in atmospheric air temperature results in lake water column stratification and the dissolved oxygen level variation in aquatic systems are greatly affected. The vertical distributions of dissolved oxygen in the water column are highly dependent due to change in vertical temperature gradient. In the present paper, an effort has been made to investigate the impact of temperature stratification on dissolved oxygen variability in the Rudrasagar, a natural lake in western Tripura. The changes in dissolved oxygen distribution in this natural lake will give us an idea of regional lake health condition and will also establish the need of further large scale research concerning the development of a biophysical-coupled model

    Limnological Comparisons of Threats to Aquatic Life Owing to Thermal Stratification in two Morphometrically Different Urban Shallow Lakes

    Get PDF
    A minimum value in the Dissolved Oxygen distribution of two shallow lakes namely, Rabindra Sarobar in south Kolkata and Subhas Sarobar in East Kolkata in the Gangetic Delta plain, has been observed to develop in the Hypolimnion during the stratified period. This minimum is usually explained by the accumulation of organic matter from the overlying layer of water. The introduction of organic matter from allochthonous and autochthonous sources is also a likely contributor to the accelerated oxygen depletion within Hypolimnion. The thermal stratification, in general, which occurs in these tropical lakes, is of direct relevance in maintaining the water quality standards, particularly for higher aquatic life. The present article attempts to investigate the possible depletion of hypolimnetic oxygen depletion as a result of the impact of thermal stratification.  These investigations will be the basic guidelines for the fishermen and their livelihoods potentially depend upon the different varieties of fishing on daily basis. The massive summer fish kills in these lakes is a major devastating happenings that is reported by the fishermen and also it is well evident from our experimental observations.  The comparison of the biodiversity of these two lakes is attempted in the present investigation. Key Words: Thermal stratification, Dissolved Oxygen, Tropical Shallow Lake, Hypolimnion, biodiversit

    Temperature and dissolved oxygen stratification in the lake Rudrasagar: Preliminary investigations

    Get PDF
    Temperature drives the major physico-chemical and biological actions in inland water bodies. The higher the water temperature, the greater the biogeochemical activity influenced by the environmental intrinsic and extrinsic parameters. Temperature also controls the dynamics of sustainability of various aquatic organisms that live in lakes and reservoirs, though higher life forms, such as fish, insects, zooplankton, phytoplankton, and other aquatic species all have a recommended temperature variety. The increase in water temperature due to the increase in atmospheric air temperature results in lake water column stratification and the dissolved oxygen level variation in aquatic systems are greatly affected. The vertical distributions of dissolved oxygen in the water column are highly dependent due to change in vertical temperature gradient. In the present paper, an effort has been made to investigate the impact of temperature stratification on dissolved oxygen variability in the Rudrasagar, a natural lake in western Tripura. The changes in dissolved oxygen distribution in this natural lake will give us an idea of regional lake health condition and will also establish the need of further large scale research concerning the development of a biophysical-coupled model.   Keywords: Thermal stratification, Dissolved Oxygen, Thermocline, Rudrasagar Lake, Hypolimnio

    A coupled terrestrial and aquatic biogeophysical model of the Upper Merrimack River watershed, New Hampshire, to inform ecosystem services evaluation and management under climate and land-cover change

    Get PDF
    Accurate quantification of ecosystem services (ES) at regional scales is increasingly important for making informed decisions in the face of environmental change. We linked terrestrial and aquatic ecosystem process models to simulate the spatial and temporal distribution of hydrological and water quality characteristics related to ecosystem services. The linked model integrates two existing models (a forest ecosystem model and a river network model) to establish consistent responses to changing drivers across climate, terrestrial, and aquatic domains. The linked model is spatially distributed, accounts for terrestrial–aquatic and upstream–downstream linkages, and operates on a daily time-step, all characteristics needed to understand regional responses. The model was applied to the diverse landscapes of the Upper Merrimack River watershed, New Hampshire, USA. Potential changes in future environmental functions were evaluated using statistically downscaled global climate model simulations (both a high and low emission scenario) coupled with scenarios of changing land cover (centralized vs. dispersed land development) for the time period of 1980–2099. Projections of climate, land cover, and water quality were translated into a suite of environmental indicators that represent conditions relevant to important ecosystem services and were designed to be readily understood by the public. Model projections show that climate will have a greater influence on future aquatic ecosystem services (flooding, drinking water, fish habitat, and nitrogen export) than plausible changes in land cover. Minimal changes in aquatic environmental indicators are predicted through 2050, after which the high emissions scenarios show intensifying impacts. The spatially distributed modeling approach indicates that heavily populated portions of the watershed will show the strongest responses. Management of land cover could attenuate some of the changes associated with climate change and should be considered in future planning for the region

    Deliberative multiattribute valuation of ecosystem services across a range of regional land-use, socioeconomic, and climate scenarios for the upper Merrimack River watershed, New Hampshire, USA

    Get PDF
    We evaluate the relative desirability of alternative futures for the upper Merrimack River watershed in New Hampshire, USA based on the value of ecosystem services at the end of the 21st century as gauged by its present-day inhabitants. This evaluation is accomplished by integrating land-use and socioeconomic scenarios, downscaled climate projections, biogeophysical simulation models, and the results of a citizen-stakeholder deliberative multicriteria evaluation. We find that although there are some trade-offs between alternative plausible futures, for the most part, it can be expected that future inhabitants of the watershed will be most satisfied if land-use planning in the intervening years prioritizes water supply and flood protection as well as maintenance of existing farmland and forest cover. With respect to climate change, it is expected that future watershed inhabitants will be more negatively affected by the projected loss of snow cover than the anticipated increase in hot summer days. More important than the specific results for the upper Merrimack River watershed, this integrative assessment demonstrates the complex yet ultimately informative potential to link stakeholder engagement with scenario generation, ecosystem models, and multiattribute evaluation for informing regional-scale planning and decision making

    A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009

    Full text link
    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues

    The potential of high-frequency profiling to assess vertical and seasonal patterns of phytoplankton dynamics in lakes: An extension of the Plankton Ecology Group (PEG) model

    Get PDF
    The use of high-frequency sensors on profiling buoys to investigate physical, chemical, and biological processes in lakes is increasing rapidly. Profiling buoys with automated winches and sensors that collect high-frequency chlorophyll fluorescence (ChlF) profiles in 11 lakes in the Global Lake Ecological Observatory Network (GLEON) allowed the study of the vertical and temporal distribution of ChlF, including the formation of subsurface chlorophyll maxima (SSCM). The effectiveness of 3 methods for sampling phytoplankton distributions in lakes, including (1) manual profiles, (2) single-depth buoys, and (3) profiling buoys were assessed. High-frequency ChlF surface data and profiles were compared to predictions from the Plankton Ecology Group (PEG) model. The depth-integrated ChlF dynamics measured by the profiling buoy data revealed a greater complexity that neither conventional sampling nor the generalized PEG model captured. Conventional sampling techniques would have missed SSCM in 7 of 11 study lakes. Although surface-only ChlF data underestimated average water column ChlF, at times by nearly 2-fold in 4 of the lakes, overall there was a remarkable similarity between surface and mean water column data. Contrary to the PEG model’s proposed negligible role for physical control of phytoplankton during the growing season, thermal structure and light availability were closely associated with ChlF seasonal depth distribution. Thus, an extension of the PEG model is proposed, with a new conceptual framework that explicitly includes physical metrics to better predict SSCM formation in lakes and highlight when profiling buoys are especially informative

    Rapid and highly variable warming of lake surface waters around the globe

    Get PDF
    In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade-1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors - from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade-1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade-1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes

    Human wetland dependency and socio-economic evaluation of wetland functions through participatory approach in rural India

    Get PDF
    Wetlands are an important source of natural resources upon which rural economies depend. They have increasingly been valuable for their goods and services, and the intrinsic ecological value they provide to local populations, as well as people living outside the periphery of the wetlands. Stakeholders' participation is essential to the protection and preservation of wetlands because it plays a very important role economically as well as ecologically in the wetland system. The objective of this study was to determine whether gender, educational status, mouzas (which are constituents of a block according to the land reform of the West Bengal Government in India), and wetland functions have any influence on the annual income of the local community. Considering a floodplain wetland in rural India, the focus was extended to recognize the pattern of wetland functions according to the nature of people's involvement through cluster analysis of the male and female populations. Using the statistical software R-2.8.1, an ANOVA (analysis of variance) table was constructed. Since the p value (significance level) was lower than 0.05 for each case, it can be concluded that gender, educational status, mouzas, and wetland functions have a significant influence on annual income. However, S-PLUS-2000 was applied to obtain a complete scenario of the pattern of wetland functions, in terms of involvement of males and females, through cluster analysis. The main conclusion is that gender, educational status, mouzas, and wetland functions have significant impacts on annual income, while the pattern of occupation of the local community based on wetland functions is completely different for the male and female populations
    corecore